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Abstract The effects of measurement noise are investigated in the context of bipartite consensus

of multi-agent systems. In the system setting, discrete-time double-integrator dynamics are assumed

for the agent, and measurement noise is present for the agent receiving the state information from

its neighbors. Time-varying stochastic bipartite consensus protocols are designed in order to lessen

the harmful effects of the noise. Consequently, the state transition matrix of the closed-loop system is

analyzed, and sufficient and necessary conditions for the proposed protocol to be a mean square bipartite

consensus protocol are given with the help of linear transformation and algebraic graph theory. It is

proven that the signed digraph to be structurally balanced and having a spanning tree are the weakest

communication assumptions for ensuring bipartite consensus. In particular, the proposed protocol is a

mean square bipartite average consensus one if the signed digraph is also weight balanced.

Keywords Bipartite consensus, discrete-time, double-integrator, measurement noise, multi-agent

systems.

1 Introduction

Consensus is a fundamental problem for multi-agent systems (MASs), attracting much at-
tention from the research community[1–6]. It is understood that global consensus is possible
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usually by and only by local cooperative interactions among the agents. However, besides coop-
eration, antagonism can also be popular in real world scenarios. For example, in social groups,
antagonism and dislike between pairs of individuals are ubiquitous, which then often leads to
a polarization: The whole group is divided into two consensus sub-groups with exactly the
opposite opinion[7]. Such a phenomenon is common in many contexts with antagonism, such
as the economic systems[8], teams opposed in a sport match, and chaotic systems[9], etc..

Referred to as “bipartite consensus”, the above scenario has been carefully addressed by a
newly proposed mathematical model in [10]. In the model, the communication networks were
modeled as signed graphs in which the edge may have either positive weight (for cooperation)
or negative weight (for antagonism) for the interaction between the two agents linked by the
edge. Then, the authors proved that first-order integrator MASs with strongly connected signed
graph can reach bipartite consensus with some appropriate protocol, if and only if the signed
graph was structurally balanced. The notion “bipartite consensus”, officially defined as the
consensus where the final agent states can be different only in the sign (hence two subgroups
as in the earlier example), has become more and more popular since then.

Considerable works have already been found for the development of bipartite consensus
for MASs. To name a few, in [11], the signed digraph was relaxed to be having a spanning
tree and sufficient conditions were given for bipartite consensus. The extensions to the cases
of high-order systems were discussed in [12, 13], whose dynamics were general linear time-
invariant systems and single input high-order systems, respectively. Bipartite consensus over
time-varying signed graphs was considered in [14]. Despite these existing works, the research on
bipartite consensus is still in its infancy. For example, most works focus on the nominal system
without the consideration of measurement noise, despite tremendous such works for conventional
consensus[15–22]. For some pioneering works for bipartite consensus with measurement noise,
the reader may refer to [23, 24] for first-order integrator MASs, and [25] for bipartite linear
χ-consensus of double-integrator MASs.

Following this line of research, in the present work we consider the bipartite consensus of
discrete-time second-order MASs with a particular focus on the effects of measurement noise,
motivated by such applications as the multivehicle system[26]. Sufficient and necessary condi-
tions for mean square bipartite consensus are provided with the help of powerful tools from
linear transformation and algebraic graph theory. It turns out that structural balance and
having a spanning tree are necessary and sufficient conditions on communication topology to
ensure a mean square bipartite consensus. Furthermore, if the signed digraph is also weight
balanced, the protocol is a mean square bipartite average consensus protocol, i.e., the mathe-
matical expectation of the position is an average of initial positions and velocities of all agents
and both the variance and mathematical expectation of the velocity are zeroes.

This work is challenging due to the following reasons. 1) Similar to [15, 16, 20–22], a
decreasing step size h(k) is introduced into the bipartite consensus protocols. It makes the
closed-loop system a time-varying stochastic system and hence, analysis tools in [10–14], which
are for bipartite consensus without measurement noise, do not work. 2) The continuous-time
results in [20] and [25] are obtained by analyzing the state transition matrix of the closed-
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loop system whose elements are expressed by integrals of exponential functions. Here, in the
discrete-time case, the state transition matrix is an infinite product of the state matrices, and
thus it is almost impossible to obtain its specific form. 3) In conventional consensus settings,
0 must be an eigenvalue of L and L (1, 1, · · · , 1)T = 0. This property is crucial in analyzing
conventional consensus behaviors, but is generally not held for bipartite consensus, meaning
the failure of conventional powerful analysis tools[20–22].

The rest of the paper is organized as follows. In Section 2, we formulate the problem based
on the preliminaries of signed graph. Then, the main theorems are established in Section 3.
Two simulation examples are given in Section 4 to illustrate the theorems. Finally, in Section 5,
concluding remarks are provided.

Notations In and 0 denote the identity and null matrices with required dimensions, respec-
tively. 1 = (1, 1, · · · , 1)T, ⊗ is a kronecker product, and sgn(·) denotes a sign function. Re(λ)
denotes the real part of λ. For given random variables x and y, E(x) denotes the mathematical
expectation of x, D(x) is its variance and Cov(x, y) is the covariance of y and x.

2 Preliminaries and Problem Formulation

2.1 Signed Digraph

The communication interactions among agents are described by a signed digraph G =
(V , E ,A) that consists of a vertex set V = {1, 2, · · · , N}, an edge set E , and a weighted adja-
cency matrix A = (aij) ∈ R

N×N . aij �= 0 ⇐⇒ (j, i) ∈ E . aij can be positive/negative. aij < 0
means that agents i and j are antagonistic and aij > 0 means that i and j are cooperative.
Ni = {j ∈ V | (j, i) ∈ E} is the neighbor set of agent i. Throughout this paper, we always
assume that aii = 0 and aijaji ≥ 0, i, j = 1, 2, · · · , N . Let L = DG − A be Laplacian of G,
where

DG = diag

⎛
⎝

N∑
j=1

|a1j |,
N∑

j=1

|a2j |, · · · ,
N∑

j=1

|aNj |
⎞
⎠ .

A signed digraph G = (V , E ,A) is called weight balanced if
∑N

k=1 |amk| =
∑N

k=1 |akm|, m =
1, 2, · · · , N .

For a signed digraph G = (V , E ,A), if there exists a bipartition {V1,V2} of V such that
V1

⋃V2 = V , V1

⋂V2 = ∅ and akl ≥ 0, for any k, l ∈ Vd, d = 1, 2; akl ≤ 0, for any k ∈
Vd, l ∈ Vm, d �= m, d,m = 1, 2, then G is structurally balanced. Otherwise, G is structurally
unbalanced.

Lemma 2.1 (see [27]) Laplacian L of G has at least one zero eigenvalue and all the other
eigenvalues have positive real parts if G is structurally balanced. Moreover, L has exactly one
zero eigenvalue if and only if G has a spanning tree.

Lemma 2.2 If G is structurally balanced, then G is weight balanced if and only if ∃S =
diag(s1, s2, · · · , sN) (si = ±1, i = 1, 2, · · · , N) such that SAS has all nonnegative elements
and 1TSL = 0.

Proof The proof is omitted for simplicity.
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2.2 Problem Formulation

The MAS under our consideration is composed of N dynamic agents. The ith agent is
described by

xi(k + 1) = xi(k) + vi(k), vi(k + 1) = vi(k) + ui(k), i = 1, 2, · · · , N, (1)

where xi(k) ∈ R, vi(k) ∈ R, ui(k) ∈ R denote the position, velocity and control input of the
ith agent, respectively.

To take into account the measurement noise, let yxij(k) = xj(k)+σxijηxij (k), and yvij (k) =
vj(k) + σvijηvij (k), j ∈ Ni be the position and velocity of the jth agent measured by the
ith agent, respectively, where {ηxij (k), ηvij (k), i, j = 1, 2, · · · , N} is the independent standard
white noise and {σxij > 0, σvij > 0, i, j = 1, 2, · · · , N} is the noise intensity.

For the ith agent, we consider the following protocol

ui(k) = −vi(k) + h(k)
∑
j∈Ni

|aij |
[(

sgn(aij)yxij (k) − xi(k)
)

+
(

sgn(aij)yvij (k) − vi(k)
)]
, (2)

where h(k) > 0 is the time-varying consensus gain, and limk→∞ h(k) = 0.
Denote Xi(k) = (xi(k), vi(k))

T, and X(k) =
(
XT

1 (k), XT
2 (k), · · · , XT

N(k)
)T ∈ R

2N . Then
substituting (2) into (1) yields the following closed-loop system in the form of a stochastic
system:

X(k + 1) =
[
IN ⊗ F + h(k)L ⊗B

]
X(k) + h(k)Θη(k), (3)

where F = ( 1 1
0 0 ), B =

(
0 0−1 −1

)
, Θ = diag(Θ1,Θ2, · · · ,ΘN) ∈ R

2N×2N2
, Θi = (ai1

(
0 0

σxi1 σvi1

)
,

ai2

( 0 0
σxi1 σvi2

)
, · · · , aiN

( 0 0
σxiN

σviN

)
) ∈ R

2×2N , i = 1, 2, · · · , N , η(k) = (ηx11(k), ηv11 (k), · · · ,
ηx1N (k), ηv1N (k), · · · , ηxN1(k), ηvN1(k), · · · , ηxNN (k), ηvNN (k))T ∈ R

2N2
.

Definition 2.3 A distributed protocol U = {ui, i = 1, 2, · · · , N} is said to be a mean
square bipartite consensus protocol for the system in (1), if for any given Xi(k0) ∈ R

2, k0 ≥ 0,
there exist ξ∗x and ξ∗v such that

lim
k→∞

E[xi(k) − γiξ
∗
x]2 = 0, lim

k→∞
E[vi(k) − γiξ

∗
v ]2 = 0, (4)

where γi ∈ {±1}, (i = 1, 2, · · · , N), E(ξ∗v ) = D(ξ∗v ) = 0, E(ξ∗x) = ψ(x1(k0), v1(k0), · · · , xN (k0),
vN (k0)), D(ξ∗x) <∞, and ψ(·) is a linear function.

The above definition can be compared with conventional consensus[16] and continuous-time
bipartite consensus[25], respectively. Intuitively, the conditions in (4) mean that each agent’s
position and velocity will converge in mean square sense to ±ξ∗x and ±ξ∗v , respectively.

As mentioned earlier the interactions among the agents in (1) are illustrated by a signed
digraph G = (V , E ,A). In what follows, we list the following conditions for better reading.

(H1) Signed digraph G = (V , E ,A) has a spanning tree.
(H2) Signed digraph G = (V , E ,A) is structurally balanced.
(H3)

∑∞
i=0 h(i) = ∞.
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(H4)
∑∞

i=0 h
2(i) <∞.

(H5) G is weight balanced.

Remark 2.4 In Definition 2.3, if ψ(·) is a weight average of the initial states, i.e.,
E(ξ∗x) = 1

N

∑N
i=1 γi[xi(k0) + vi(k0)], then the protocol U is called a mean square bipartite

average consensus protocol.

Remark 2.5 The protocol in (2) is consistent with the protocol in [20] if aij ≥ 0, i, j =
1, 2, · · · , N , i.e., the signed digraph reduces to a conventional graph with nonnegative weights.
In (2), h(k) is needed to be sufficiently small when k is sufficiently large, that is, limk→∞ h(k) =
0. This is to make sure that the eigenvalues of the state matrix in the closed-loop system are
in the unit circle of the complex plane.

Remark 2.6 From the subsequent analysis, it can be seen that γi ∈ {±1} in Definition 2.3
is determined by the communication topology and independent of the initial states.

2.3 Useful Lemmas

Lemma 2.7 Consider the following linear time-varying discrete-time system

y(k + 1) = Jq(k, λ)y(k), (5)

where q ∈ N, λ ∈ C,Re(λ) > 0, y(k) = (y11(k), y12(k), · · · , yq1(k), yq2(k))T ∈ R
2q,

Jq(k, λ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

J1
q J2

q 0 · · · 0

0 J1
q J2

q · · · 0
...

...
...

. . .
...

0 0 0 · · · J1
q

⎞
⎟⎟⎟⎟⎟⎟⎠

2q×2q

,

J1
q =

⎛
⎝ 1 1

−λh(k) −λh(k)

⎞
⎠ , J2

q =

⎛
⎝ 0 0

−h(k) −h(k)

⎞
⎠ .

Assume Φλ(k, k0) is the state transition matrix of (5). Then limk→∞ Φλ(k, k0) = 0, if limk→∞
h(k) = 0 and

∑∞
i=0 h(i) = ∞.

Proof Denote yi(k) = yi1(k) + yi2(k), i = 1, 2, · · · , q, and define y(k) = (y1(k), y2(k),
· · · , yq(k))T ∈ R

q. Then it can be easily shown that

y(k + 1) = Jq(k, λ)y(k), (6)

where

Jq(k, λ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − λh(k) −h(k) · · · 0

0 1 − λh(k) · · · 0
...

...
. . .

...

0 0 · · · 1 − λh(k)

⎞
⎟⎟⎟⎟⎟⎟⎠

q×q

.
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Let Φ
λ
(k, k0) be the state transition matrix of the system in (6). Then

y(k) = Φ
λ
(k, k0)y(k0). (7)

According to Lemma 5 of [28], for any ε > 0, there exists M > 0 such that ‖ Φ
λ
(k, k0) ‖2≤

Me−
Re(λ)−ε

2

∑k
i=k0

h(i), if limk→∞ h(k) = 0. It follows that limk→∞ Φ
λ
(k, k0) = 0, if

∑∞
i=0 h(i) =

∞. Combining this with (7) gives limk→∞ y(k) = 0, i.e., limk→∞ yi(k) = 0, i = 1, 2, · · · , q.
Recall yi(k) = yi1(k) + yi2(k), i = 1, 2, · · · , q. By (5), one obtains that yi1(k + 1) = yi(k), i =
1, 2, · · · , q, yi2(k + 1) = −λh(k)yi(k) − h(k)yi+1(k), i = 1, 2, · · · , q − 1, and yq2(k + 1) =
−λh(k)yq(k). This together with limk→∞ h(k) = 0 leads to limk→∞ y(k) = 0. Since y(k) =
Φλ(k, k0)y(k0), by the arbitrariness of y(k0), limk→∞ Φλ(k, k0) = 0.

The state transition matrix reveals many essential properties of the closed-loop system in (3).
The next lemma for the state transition matrix is indispensable to the convergence analysis of
the closed-loop system in (3).

Lemma 2.8 If (2) is a mean square bipartite consensus protocol, then there exists v ∈
R

2N , such that
lim

k→∞
Φ(k, k0) = βvT,

where β = (γ1, 0, γ2, 0, · · · , γN , 0)T ∈ R
2N .

Proof From Definition 2.3 we know that for any given Xi(k0) ∈ R
2, i = 1, 2, · · · , N, k0 ≥ 0,

there exist random variables ξ∗x and ξ∗v such that

lim
k→∞

E[xi(k) − γiξ
∗
x]2 = 0, lim

k→∞
E[vi(k) − γiξ

∗
v ]2 = 0,

where γi = ±1, i = 1, 2, · · · , N , E(ξ∗x) = 1
N

∑N
i=1 γi[xi(k0) + vi(k0)], and E(ξ∗v ) = 0.

Denote γ = (γ1, γ2, · · · , γN )T. Then

lim
k→∞

E‖X(k)− γ ⊗ (ξ∗x, ξ
∗
v)T‖2 = 0. (8)

Let Φ(k, k0) be the state transition matrix of (3). Then the solution of (3) can be easily
shown as X(k) = Φ(k, k0)X(k0) +

∑k−1
i=k0

Φ(k, i+ 1)h(i)Θη(i). Define X2(k) �
∑k−1

i=k0
Φ(k, i+

1)h(i)Θη(i), and assume that X2(k) converges to X∗
2 in mean square. Then, by (8), one has

γ ⊗ (Eξ∗x, 0)T = lim
k→∞

EX(k) = lim
k→∞

Φ(k, k0)X(k0) + EX∗
2 . (9)

Since X(k0) is arbitrary, there exist γ, ξ∗ and γ̂, ξ̂∗, respectively, such that

γ ⊗ (Eξ∗, 0)T = 2 lim
k→∞

Φ(k, k0)X(k0) + EX∗
2 ,

γ̂ ⊗ (Eξ̂∗, 0)T = 3 lim
k→∞

Φ(k, k0)X(k0) + EX∗
2 , (10)

where γi, γ̂i ∈ {±1}, i = 1, 2, · · · , N . This together with (9) leads to

γ ⊗ (Eξ∗x, 0)T = γ ⊗ 2(Eξ∗, 0)T − γ̂ ⊗ (Eξ̂∗, 0)T. (11)
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Immediately it follows that γ = ±γ = ±γ̂.
By (10), we assume that limk→∞ Φ(k, k0)X(k0) = γ ⊗ (f∗

X , 0)T. Since X(k0) is arbitrary,
one can take X(k0) as ei = (0, · · · , 0, 1︸︷︷︸

i

, 0, · · · , 0)T, i = 1, · · · , 2N , respectively. Immediately

it follows that

lim
k→∞

Φ(k, k0) =
(
γ ⊗ (f∗

e1
, 0)T, γ ⊗ (f∗

e2
, 0)T, · · · , γ ⊗ (f∗

e2N
, 0)T

)

= (γ1, 0, γ2, 0, · · · , γN , 0)T(f∗
e1
, f∗

e2
, · · · , f∗

e2N
)1×2N � βvT.

This completes the proof.

Remark 2.9 From the proof of Lemma 2.8 we know that γ in Definition 2.3 may differ
at most by a minus sign for any given initial values. In this sense, γ can be considered the same
since the minus can be seen as a part of random variable ξ∗x/ξ∗v . Therefore, γ is independent of
initial values.

3 Mean Square Bipartite Consensus

Theorem 3.1 Given the system in (1), (2) is a mean square bipartite consensus protocol
if and only if Conditions (H1)–(H4) hold.

Proof Sufficiency. (H1)–(H2) and Lemma 2.1 imply that 0 is a simple eigenvalue of L and
all the other eigenvalues have positive real parts. Then there must exist an invertible matrix
C ∈ C

N×N , such that

C−1LC = Λ = diag(0, J2, J3, · · · , Js), (12)

where Ji is qi dimensional Jordan block with eigenvalue λi on its diagonal. Obviously, q2 + q3 +
· · · + qs = N − 1 and Re(λi) > 0, i = 2, 3, · · · , s. Therefore, the closed-loop system in (3) can
be rewritten as

X(k + 1) = (C ⊗ I2)diag

⎛
⎝

⎛
⎝1 1

0 0

⎞
⎠ , Jq2(k, λ2), · · · , Jqs(k, λs)

⎞
⎠ (C−1 ⊗ I2)X(k) + h(k)Θη(k),

where Jrm(k, λm), m = 2, 3, · · · , s is defined as in (6). As follows from Lemma 2.7, the state
transition matrix Φ(k, k0) of (3) satisfies

Φ(k, k0) = (C ⊗ I2)diag

⎛
⎝

⎛
⎝1 1

0 0

⎞
⎠ ,Φλ2(k, k0), · · · ,Φλs(k, k0)

⎞
⎠ (C−1 ⊗ I2),

where Φλm(k, k0), m = 2, 3, · · · , s is defined as in Lemma 2.7. Immediately from Lemma 2.7,
(H3) and (H4), one obtains that limk→∞ Φλm(k, k0) = 0,m = 2, 3, · · · , s. Therefore,

lim
k→∞

Φ(k, k0) = (C ⊗ I2)diag

⎛
⎝

⎛
⎝1 1

0 0

⎞
⎠ ,0, · · · ,0

⎞
⎠ (C−1 ⊗ I2). (13)
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The next step is to prove X2(k) �
∑k−1

i=k0
Φ(k, i+ 1)h(i)Θη(i) converges in mean square to

a random variable by using Cauchy convergence criterion[29]. From (H4) we know that for any
ε > 0, ∃K1 > 0 satisfying

∞∑
i=K1

h2(i) < ε. (14)

By (13), for the given ε > 0, ∃K2 > K1 such that for ∀l1 ≥ l2 > K2,

‖Φ(l1, i) − Φ(l2, i)‖2 < ε, ∀i = k0, k0 + 1, · · · ,K1. (15)

By (13), there exists MΦ <∞ satisfying

‖Φ(·, ·)‖2 ≤ MΦ . (16)

Since

X2(l1) −X2(l2) =
l2−1∑
j=k0

[
Φ(l1, j + 1) − Φ(l2, j + 1)

]
h(j)Θη(j) +

l1−1∑
j=l2

Φ(l1, j + 1)h(j)Θη(j),

by (14), (15) and (16), one has
∥∥∥∥∥E

[(
X2(l1) −X2(l2)

)(
X2(l1) −X2(l2)

)T]∥∥∥∥∥
2

≤ ε2a

K1−1∑
j=k0

h2(i) + 4M2
Φεa+ M2

Φεa,

where a = ‖ΘΘT‖2. Since ε is arbitrary, there must exist a random vector X∗
2 such that

X2(k) converges in mean square to X∗
2 by Cauchy convergence criterion. Thus, X(k) =

Φ(k, k0)X(k0) +X2(k) converges to X∗ in mean square sense. Denote X∗ � (x∗1, v∗1, x∗2, v∗2, · · · ,
x∗N , v

∗
N )T. Then, by (13), one obtains

X∗ = (C ⊗ I2)diag

⎛
⎝

⎛
⎝1 1

0 0

⎞
⎠ ,0, · · · ,0

⎞
⎠ (C−1 ⊗ I2)X(k0) + X∗

2.

Thus,

E(X∗) = (C ⊗ I2)diag

⎛
⎝

⎛
⎝1 1

0 0

⎞
⎠ ,0, · · · ,0

⎞
⎠ (C−1 ⊗ I2)X(k0). (17)

Denote the first column of C as Cr and define the first row of C−1 as CT
b = (b1, b2, · · · , bN).

Then CT
b Cr = 1. By (12), LC = CΛ and C−1L = ΛC−1. Thus, CT

b L = 0 and LCr = 0. From
(H2) and Lemma 1 of [10] we know that there exists F = diag(μ1, μ2, · · · , μN ) (μi ∈ {±1}) such
that FAF has all nonnegative elements, and hence, FLF1 = 0. Since 0 is a simple eigenvalue
of L, its eigensubspace is one dimensional. Without loss of generality we may assume that Cr =
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F1 = (μ1, μ2, · · · , μN )T. This together with (17) gives E(x∗i ) = μi

∑N
j=1 bj[xj(k0) + vj(k0)],

E(v∗i ) = 0, i = 1, 2, · · · , N. By definition,

D(X∗) � E
[
(X∗ − E(X∗))(X∗ − E(X∗))T

]

= E
[
X∗

2(X
∗
2)

T
]

= lim
k→∞

k−1∑
l=k0

h2(l)Φ(k, l + 1)ΘE
[
η(l)ηT(l)

]
ΘTΦT(k, l + 1). (18)

Denote

Φ∗ = (C ⊗ I2)diag
( ⎛

⎝1 1

0 0

⎞
⎠ , 0, · · · , 0

)
(C−1 ⊗ I2).

Then following the similar procedure as in Theorem 1 of [20], one has

D(X∗) =
∞∑

l=k0

h2(l)Φ∗ΘΘT(Φ∗)T = (Δkl)N×N ⊗
⎛
⎝1 0

0 0

⎞
⎠ ,

where Δkl = μkμlΔ, k, l = 1, 2, · · · , N, Δ =
∑∞

l=k0
h2(l)

∑N
l=1

∑N
j=1 b

2
l a

2
lj(σ

2
xlj

+ σ2
vlj

). Imme-
diately, one has D(x∗l ) = Δll = Δ < ∞, D(v∗l ) = 0, Cov(x∗l , x

∗
m) = Δlm and Cov(v∗l , v

∗
m) =

0, ∀l,m = 1, 2, · · · , N. Hence, ∀m = 1, 2, · · · , N ,

lim
k→∞

E [xm(k) − μmμ1x
∗
1]

2

≤ lim
k→∞

E [xm(k) − x∗m]2 + E [x∗m − μmμ1x
∗
1]

2 + 2 lim
k→∞

[
E(xm(k) − x∗m)2

] 1
2

[
E(x∗m − μmμ1x

∗
1)

2
] 1

2

= D (x∗m) + (Ex∗m)2 +D (x∗1) + (Ex∗1)
2 − 2μmμ1[Δm1 + (Ex∗m)(Ex∗1)]

= 0.

Similarly, limk→∞ E[vm(k) − μmμ1v
∗
1]

2 = 0. Taking ξ∗x = x∗1, ξ
∗
v = v∗1 and γm = μmμ1,

m = 1, 2, · · · , N , by Definition 2.3, one gets the sufficiency.
Necessity. The necessity is proved in the following five steps.
Step (I) Prove the necessity of (H3), i.e.,

∑∞
i=0 h(i) = ∞.

Assume by contradiction that (H3) does not hold, i.e.,
∑∞

i=0 h(i) < ∞. Then, there exists
M > 0 such that

∑∞
i=0 h(i) = M. Denote X(k) = [IN ⊗ (1, 1)]X(k) � (x1(k), x2(k), · · · ,

xN (k))T ∈ R
N . Then, by (3),

X(k + 1) = [IN − h(k)L]X(k) + h(k) [IN ⊗ (1, 1)]Θη(k). (19)

Let Φ(k, k0) be the state transition matrix of the system in (19). Then, Φ(k, k0) =
∏k−1

i=k0
(IN

−h(i)L). By the definition of Laplacian, all the eigenvalues of L have nonnegative real parts.
Thus there exists an invertible matrix P such that P−1LP = diag (J1, J2, · · · , Js), where Jj(1 �
j � s) is an nj × nj Jordan block with λj on its diagonal and n1 + n2 + · · · + ns = N .
Clearly, Re(λj) ≥ 0, j = 1, 2, · · · , s. Therefore, Φ(k, k0) = P

∏k−1
i=k0

(IN − h(i)J)P−1. Since∑∞
i=0 h(i) < ∞, limk→∞ h(k) = 0. Therefore, there exists N∗ > 0 such that for any k > N∗,
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0 ≤ λ∗h(k) < 1
2 ln 2, where λ∗ = max {Re(λj), j = 1, 2, · · · , s}. Taking k0 = N∗ + 1, by

1 − x ≥ e−2x (0 ≤ x < 1
2 ln 2), one obtains that for any j = 1, 2, · · · , s,

∣∣∣∣∣
k−1∏
i=k0

(1 − λjh(i))

∣∣∣∣∣ =
k−1∏
i=k0

|1 − λjh(i)| ≥
k−1∏
i=k0

|1 − Re(λj)h(i)|

≥
k−1∏
i=k0

e−2λ∗h(i) = e−2λ∗ ∑ k−1
i=k0

h(i) ≥ e−2λ∗M > 0.

Therefore, limk→∞
[∏k−1

i=k0
(1 − λjh(i))

]
�= 0, and hence rank

[
limk→∞ Φ(k, k0)

]
= N . Since

Φ(k, k0) is the state transition matrix of (3), Φ(k, k0)[IN ⊗ (1, 1)] = [IN ⊗ (1, 1)]Φ(k, k0).
Immediately, one has IN ⊗(1, 1) =

(
limk→∞ Φ(k, k0)

)−1
[IN ⊗ (1, 1)] (limk→∞ Φ(k, k0)). Hence,

rank [limk→∞ Φ(k, k0)] = N . This contradicts the statement of Lemma 2.8. Thus,
∑∞

i=0 h(i) =
∞, i.e., (H3) holds.

Step (II) Prove that 0 is a simple eigenvalue of L.
First, we prove that 0 is an eigenvalue of L. If otherwise, 0 is not an eigenvlaue of L. Then

from (H3) and Lemma 2.7 we know that limk→∞ Φ(k, k0) = 0. Combining this with (9) leads to
EX∗

2 = γ⊗(Eξ∗x, 0)T. Since EX∗
2 has nothing to do with the initial stateX(k0), Eξ∗x is indepen-

dent ofX(k0). This contradicts the statement that Eξ∗x = ψ(x1(k0), v1(k0), · · · , xN (k0), vN (k0)).
Thus, 0 is an eigenvalue of L. Assume J0

1 is a Jordan block associated with eigenvalue 0. Then
J0

1 must be one dimensional. If otherwise, without loss of generality we may assume that J0
1 is

two dimensional, i.e., J0
1 = ( 0 1

0 0 ). A direct calculation gives

Φ0(k, k0) =

⎛
⎜⎜⎜⎜⎜⎝

1 1 −∑k−1
i=k0+1 h(i) −∑k−1

i=k0+1 h(i)

0 0 −h(k0) −h(k0)

0 0 1 1

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠
,

which is a block matrix associated with J0
1 in Φ(k, k0). By

∑∞
i=0 h(i) = ∞, limk→∞ Φ0(k, k0)

does not exist and hence limk→∞ Φ(k, k0) does not exist. This contradicts Lemma 2.8. Other
cases can be similarly proved. Therefore, the Jordan block corresponding to eigenvalue 0 is one
dimensional.

Second, we prove 0 is a simple eigenvalue of L. Assume by contradiction that the multiplicity
of 0 is m and m > 1. Without loss of generality we may assume that m = 2. Since the Jordan
block corresponding to 0 is one dimensional, by a abuse of notation,

lim
k→∞

Φ(k, k0) = (C ⊗ I2)diag

⎛
⎝

⎛
⎝1 1

0 0

⎞
⎠ ,

⎛
⎝1 1

0 0

⎞
⎠ ,0, · · · ,0

⎞
⎠ (C−1 ⊗ I2).

Thus, rank (limk→∞ Φ(k, k0)) = 2. This contradicts the statement that rank (limk→∞ Φ(k, k0)) =
rank(βvT) ≤ 1. Other cases can be similarly proved. So m = 1.

Finally, 0 is a simple eigenvalue of L.
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Step (III) Prove the necessity of (H2).
From Step (II) we know that 0 is a simple eigenvalue of L. For simplicity, we use the same

symbol in (12) and have C−1LC = Λ = diag(0, J2, J3, · · · , Js). Combining (13) with Lemma 2.8
leads to

(C ⊗ I2)diag

⎛
⎝

⎛
⎝1 1

0 0

⎞
⎠ ,0, · · · ,0

⎞
⎠ × (C−1 ⊗ I2) = βvT.

This implies that Cr = (γ1, γ2, · · · , γN )T · f∗, where Cr is the first column of C and f∗ =
vT

(
Cr ⊗ (1 0)T

)
. From (12) we know LCr = 0. Thus, L(γ1, γ2, · · · , γN )T = 0. Therefore,

for ∀j, γi

∑
j �=i |aij | =

∑
j �=i γjaij , j = 1, 2, · · · , N. Since γi = ±1, γ2

i = 1, i = 1, 2, · · · , N,∑
j �=i |aij | =

∑
j �=i γiγjaij , and hence γiγjaij = |aij | ≥ 0. Denote V1 = {i|γi = 1, i =

1, 2, · · · , N} and V2 = {i|γi = −1, i = 1, 2, · · · , N}. Then V1

⋃V2 = V , V1

⋂V2 = ∅ and
for any k ∈ Vs, l ∈ Vm, s �= m, s,m ∈ {1, 2}, akl ≤ 0; for any k, l ∈ Vm,m ∈ {1, 2},akl ≥ 0. By
definition, G is structurally balanced, i.e., (H2) holds.

Step (IV) Prove the necessity of (H1).
Since Step (II) and Step (III) hold, Lemma 2.1 implies that G has a spanning tree, i.e., (H1)

holds.
Step (V) Prove the necessity of (H4).
By a slight abuse of notation, we assume CT

b = (b1, b2, · · · , bN) is the first row of C−1 and
CT

b L = 0. By (3), one has
[
CT

b ⊗ (1, 1)
]
X(k+1) =

[
CT

b ⊗ (1, 1)
]
X(k)+h(k)

[
CT

b ⊗ (1, 1)
]
Θη(k).

Denote ζT = CT
b ⊗ (1, 1). Then ζTX(k) = ζTX(k0)+

∑k−1
i=k0

h(i)ζTΘη(i). By Definition 2.3 we
know that

∑k−1
i=k0

h(i)ζTΘη(i) converges in mean square to a random vector with finite variance.

Hence limk→∞ E
[∑k−1

i=k0
h(i)ζTΘη(i)

]2

<∞. If (H4) does not hold, i.e.,
∑∞

i=0 h
2(i) = ∞, then

limk→∞ E
[∑k−1

i=k0
h(i)ζTΘη(i)

]2

= limk→∞
∑k−1

i=k0
h2(i)ζTΘΘTζ = ∞. This leads to a contra-

diction. Hence,
∑∞

i=0 h
2(i) <∞, i.e., (H4) holds.

Remark 3.2 From the sufficiency proof of Theorem 3.1 we know that γi = μiμ1, i =
1, 2, · · · , N, where μi is the element of right eigenvector associated with eigenvalue 0 of L.
Therefore, γi is determined by the communication topology and has nothing to do with the
initial state X(k0).

Remark 3.3 Under (H1) and (H2), the bipartite consensus problem over signed digraphs
can be transformed into a consensus problem over traditional digraphs. Therefore, part of the
sufficiency proof of Theorem 3.1 can be similarly derived from [20]. In the necessity proof of
Theorem 3.1, however, (H1) and (H2) are no longer prerequisites, but conclusions to be derived.
Thus, methods in [16] and [20] are not applicable.

Remark 3.4 It is worth noting that results in [22] depends on the precondition (H1), i.e.,
G has a spanning tree. Here, from Theorem 3.1, it can be seen that (H1) is also necessary for
mean square bipartite consensus.

Theorem 3.5 The protocol in (2) is a mean square bipartite average consensus protocol
for (1) if and only if (H1)–(H5) hold.
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Proof Sufficiency. Since (H1)–(H4) hold, using the same arguments as in the sufficiency
proof of Theorem 3.1, one sees that 0 is a simple eigenvalue of L, FLF1 = 0, and Cb =
(b1, b2, · · · , bN)T, Cr = F1 = (μ1, μ2, · · · , μN )T (μi = ±1, i = 1, 2, · · · , N) are the left and right
eigenvector associated with eigenvalue 0, respectively. Applying (H5), we obtain 1TFLF = 0.
Thanks to CT

b Cr = 1, CT
b = 1

N 1TF = 1
N (μ1, μ2, · · · , μN ), i.e., bj = 1

N μj , j = 1, 2, · · · , N. By
Definition 2.3, the protocol in (2) is a mean square bipartite average consensus protocol.

Necessity. From the necessity proof of Theorem 3.1 it can be seen that (H1)–(H4) hold. It
suffices to show that (H5) holds. From Step (III) and Step (V) in the necessity proof of Theo-
rem 3.1, we know that Cb = (b1, b2, · · · , bN )T and Cr are the left and right eigenvectors associ-
ated with eigenvalue 0 of L, respectively. Furthermore, Cr = f∗(γ1, γ2, · · · , γN )T, γiγjaij ≥ 0.
Since CT

b Cr = 1, f∗ ∑N
j=1 bjγj = 1. Denote ζT = CT

b ⊗ (1, 1) = (b1, b1, b2, b2, · · · , bN , bN )T.
Then, by (3), one has ζTX(k) = ζTX(k0) +

∑k−1
i=k0

h(i)ζTΘη(i). Thus, limk→∞ E
(
ζTX(k)

)
=

ζTX(k0) =
∑N

i=1 bi[xi(k0) + vi(k0)]. On the other hand, by Definition 2.3, one has

lim
k→∞

E(ζTX(k)) = lim
k→∞

E[b1x1(k) + b1v1(k) + · · · + bNxN (k) + bNvN (k)]

=

⎛
⎝

N∑
j=1

bjγj

⎞
⎠E(ξ∗x)

=

⎛
⎝

N∑
j=1

bjγj

⎞
⎠ 1
N

N∑
i=1

γi[xi(k0) + vi(k0)].

Thus, bi = (∑ N
j=1 bjγj)

N γi, i = 1, 2, · · · , N. Denote si = Nf∗bi (i = 1, 2, · · · , N) and assume
S = diag (s1, s2, · · · , sN ). Then SAS has all nonnegative elements and 1TSL = Nf∗CT

b L = 0.
By Lemma 2.2, G is weight balanced, i.e., (H5) holds.

Remark 3.6 In conventional consensus work[21], (H1), (H3)–(H5) are proved to be suffi-
cient conditions for ensuring mean square average consensus. Here, from Theorem 3.5, one can
see that they are also necessary to achieve mean square bipartite average consensus.

4 Simulation

In this section, we present two simulation examples to illustrate our theoretical results.

Example 4.1 Consider a group of 5 agents where each agent is described by (1). The
communication interactions among 5 agents are represented by a signed digraph G1 = (V , E1,A1)
as illustrated in Figure 1, where V = {1, 2, 3, 4, 5}. Obviously, agent 5 is the root of G1, and
hence, it has a spanning tree. From Figure 1 we know that a21 = 1, a15 = −2, a34 = −1,
and a45 = 1. By definition, G1 is structurally balanced. Assume that L1 is the Laplacian of
G1. Then, the eigenvalues of L1 are 1, 2, 1, 1, 0 and left and right eigenvectors associated with
eigenvalue 0 are Cb = (b1, b2, · · · , b5)T = (0 0 0 0 −1)T and Cr = (1 1 1 −1 −1)T, respectively.



BIPARTITE CONSENSUS WITH MEASUREMENT NOISE 1537

1
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−2

−1 1

1

Figure 1 Signed digraph G1

Considering the effects of measurement noise, we choose h(k) = 1
k+1 , k = 0, 1, · · · , in pro-

tocol (2). It is known that h(k) satisfies (H3) and (H4). Suppose that the initial states are
given by X1(0) = (−4 2)T, X2(0) = (5 1)T, X3(0) = (0 1)T, X4(0) = (2 − 2)T, and
X5(0) = (−2 4)T. Let V11 = {1, 2, 3} and V12 = {4, 5}. The positions and velocities of agents
in V11 and V12 evolve by applying the protocol in (2), which are presented in Figures 2 and 3,
respectively. From Theorem 3.1 and Definition 2.3 we know that xi(t)/vi(t) (i = 1, 2, · · · , 5) will
converge to ±ξ∗x/ ± ξ∗v in mean square sense. Moreover, E(ξ∗x) =

∑5
j=1 bj[xj(0) + vj(0)] = −2

and E(ξ∗v ) = 0. They are validated by Figures 2 and 3, respectively.
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Figure 2 Position curves of agents over G1
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Figure 3 Velocity curves of agents over G1

Example 4.2 Particularly, suppose the communication interactions among the five agents
in Example 4.1 are represented by signed digraph G2 = (V , E2,A2), as illustrated in Figure 4,
where E2 = {(1, 2), (2, 5), (5, 1), (5, 4), (4, 3), (3, 1)} and a13 = 1, a15 = −2, a21 = 3, a34 = −1,
a52 = −3 and a54 = 1. Obviously, G2 not only satisfies (H1) and (H2), but also is weight
balanced. The eigenvalues of Laplacian L2 are 4.6040± 2.2479j, 0.3960± 0.5480j (j2 = −1), 0
and right eigenvector associated with eigenvalue 0 is Cr = (−1,−1,−1, 1, 1)T.
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Figure 4 Signed digraph G2

To reduce the detrimental effects of measurement noise, h(k) = k
k2+1 , k = 0, 1, · · · is chosen

in Protocol (2). Clearly, h(k) satisfies (H3) and (H4). The initial states are X1(0) = (−4 2)T,
X2(0) = (5 1)T, X3(0) = (2 0)T, X4(0) = (1 − 2)T, X5(0) = (−2 4)T.

The positions and velocities of the five agents evolve by applying the protocol in (2), which
are illustrated in Figures 5 and 6, respectively. From Theorem 3.5 we know that the position
and velocity of each agent will converge in mean square to ±ξ∗x and ±ξ∗v , respectively. Moreover,
E(ξ∗x) = 1

5

∑5
j=1 γj [xj(0) + vj(0)] = −1 and E(ξ∗v ) = 0. They are validated by Figures 5 and 6,

respectively.
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Figure 5 Position curves over G2
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Figure 6 Velocity curves over G2

5 Conclusion

The bipartite consensus problem is investigated for discrete-time double-integrator MASs in
the presence of measurement noise. Necessary and sufficient bipartite consensus conditions are
established, where the signed graph is required to be structurally balanced and have a spanning
tree. Further, if the signed digraph is weight balanced, mean square bipartite average consensus
is achieved. Within this theoretical framework the switching communication topology will be
our focus in the future work.
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